
© John F. Rider

ELECTRICAL AND MECHANICAL DATA

Range
\qquad
TV Channels 2 to 13
Intermediate Frequencies Video 26.1 Mc
Sound 21.6 Mc

Chassis 140, 142, 143, 146 and 147 are all electrically and mechanically similar except for slight variations as follows:

Chassis 140 is a 24 tube receiver which supplies a second anode voltage for a $10^{\prime \prime}$ picture tube and contains integral mounting provisions for a $10^{\prime \prime}$ kinescope tube.

Chassis 142 is a 24 tube receiver which supplies a second anode voltage for a $12^{\prime \prime}$ picture tube and contains integral mounting provisions for a $12^{\prime \prime}$ kinescope tube. Electrically, Chassis 142 is identical to Chassis 140 , except where a 12 QP4 tube is used, in which case, changes are made to provide additional focusing current. (See Schematic Diagram.)

Chassis 143 is a 26 tube receiver which supplies a second anode voltage of approximately 12,000 volts and provides plug and cable connections for a separately mounted $15^{\prime \prime}$ or $16^{\prime \prime}$ tube, and for separately mounted tuning controls. The audio output transformer is designed for operation with a $12^{\prime \prime}$ speaker.

Chassis 146 is a 24 tube receiver identical to Chassis 142 with the exception that the audio output transformer is designed to operate with a $12^{\prime \prime}$ speaker.

Chassis 147 is a 26 tube receiver identical to Chassis 143 , except that the tuning controls are integrally mounted on the chassis.

These chassis are all designed for use with a high gain Head end, such as RF-4 and will not operate with RF-1, RF-2 or RF-3.

TUBE COMPLEMENT

(Less Tuining Unit)

2	6AU6	Sound IF	V101, V102
1	6AL5	Ratio Detector	V103
1	6AV6	1st Audio	V104
1	6K6	Audio Output	V105
2	6AG5	Video IF	V106, V107
2	6AU6	Video IF	V108, V109
1	6AL5	Video Detector	V110
1	6AC7	Video Amplifier	V111
1	6SN7	D.C. Restorer, Sync Sep.	V112
1	6SN7	Sync Separator and Clipper	V113
1	6SN7	Vertical Osc. and Output	V114
1	6C4	A.F.C. Phase Splitter	V115
1	6AL5	A.F.C. Phase Comparator	V116
1	SU4G	Low Voltage Rectifier	V117
1	6SN7	Horizontal Oscillator	V118
1	6BG6	Horizontal Output	V119
1	1B3GT	High Voltage Rectifier	V120
1	6W4GT	Damping Diode	V121

Summary of Tube Complement

6AU6	4	6SN7GT	4	
6AL5	3	6C4	1	
6AV6	1	6BG6	1	
6K6	1	1B3GT	1	2*
6AG5	2	6W4GT	1	
6AC7	1	5U4G	1	2*

TUNING UNIT

1	$6 A G 5$	RF Amplifier
1	6 J 6	Osc. and Mixer

PICTURE TUBES

The following kinescope tubes may be used interchangeably in the respective chassis which employ 10,12 , or 16 inch tubes. Slight circuit variations for specific tubes are noted in the text.

10BP4
10FP4
12KP4
12LP4
12QP4
15AP4
16AP4

Fig. I TUBE LOCATIONS-CHASSIS 140, 142, 146

MECHANICAL ADJUSTMENTS

WARNING

Television picture tubes contain an extremely high vacuum, and will collapse and shatter (implode) with considerable violence if broken. This can result in serious personal injury from flying glass. It is recommended that gloves and goggles be worn while handling these tubes.

Installing Picture Tube

Chassis 140, 142, 146.
The picture tube is installed at the factory and remains in place during shipment of the set. Initial installation requires checking of the tube position. The installation steps are outlined below as a guide in checking the tube placement. When it is necessary to remove the tube for service, reverse

LII6
LIN CONTROL
(UNOER CHASSIS
(UNDER CHASSIS)
H. V. RECT

Fig. 2
the instr
1-Loos
2-Care
cente
this
mate
142
$11 / 2^{\prime \prime}$
3-Insta
ing
4-With
forw
Löck
to br
top
addit
tube,
S—Witl
ing
It is

c-Rotate and slide the beam bender for maximum raster brilliance, advancing the brightness control slightly, if necessary to obtain a raster. Do not attempt to compensate for shadows in the corners of the raster with the beam bender, if such adjustment causes a sacrifice of raster brilliance. Such adjustments must be made with the deflection and focus coil settings.
d-If it is impossible to obtain a raster as outlined above, turn the set off and try another beam bender.
e-Make the final fine adjustment of the beam bender with the brightness control set for a raster brilliance slightly above normal and the focus control set for a sharp line structure. If this setting places the beam bender more than $1 / 4^{\prime \prime}$ from the internal flags on the tube gun, the beam bender magnet is probably weak and the bender should be replaced.

CAUTION

The above procedure must be carefully followed, or serious kinescope damage may result. A misadjusted beam bender causes the electron stream to strike the edge of the anode top disc and vaporize the metal of the disc. The gases thus released are very damaging to the internal coating of the tube screen, and may cause circular darkened areas similar to ion spots to appear on the screen, even though the ions are being properly trapped by the beam bender. It is possible to damage a tube in as little as 15 seconds if the beam bender is improperly set and the brilliance control is set at maximum.
f -After the final beam bender adjustment has been made, check the bender for tightness on the tube neck, and, if necessary, tape or wedge it in place.
g - Whenever a set is shipped, the beam bender adjustment must be rechecked as above.
Chassis 143 and 147, 16" tube:
A. To remove tube:

1-Remove the 4 wing nuts marked " A " in Figure 3 below.
2-Remove the kinescope tube socket and disconnect the yoke and second anode cables. Remove the clamp holding the second anode cable to the cabinet.
3-Slide the tube mounting board back and out of the cabinet, raising the back edge sufficiently to allow the top of the tube to clear the rib at the top rear of the cabinet.
4-Remove the vinyl tube holding strap and the beam bender.
S-Loosen the four screws marked "B" in Figure 3, three full turns.
6-Lift the rim of the tube clear of the insulators, supporting the front edge of the yoke assembly at the same time. MORE THAN MODERATE STRAIN ON THE NECK OF THE TUBE MAY RESULT IN BREAKAGE OF THE TUBE AND INJURY FROM FLYING GLASS.
7-Slide the tube forward and out of the yoke assembly.
B. To reinstall tube:

1 -Remove tube mounting board from the cabinet.

2-Loosen the four screws marked " B " in Figure 3 at least 3 full turns.
3-Slide the neck of the tube through the yoke until the metal cone of the tube strikes the insulators at the front of the tube mounting board.
4-Raise the front edge of the yoke assembly, raising the front of the tube at the same time.

5-Slide the tube into the yoke until the flaring portion of the tube seats against the deflection yoke. WARNING. DO NOT ATTEMPT TO FORCE THE TUBE INTO PLACE. A FEW SECONDS INVESTIGATION OF THE CAUSE OF AN OBSTRUCTION MAY PREVENT SERIOUS INJURY FROM A BROKEN TUBE.
6-Set the rim of the tube into the insulators at the front of the tube mounting board.

7-Reinstall the vinyl tube holding strap, following the instructions on the tube mounting board.
8-Reinstall the beam bender as outlined in Step 10 under Chassis 140,142 , and 146.
Chassis 143 and 147, $15^{\prime \prime}$ tube (indicated by the suffix " G '" on the set model number, as $\mathbf{8 2 6 G}$, 827 G , etc.)
A. To remove tube:

1-Follow Steps 1 through 5 for removal of a $16^{\prime \prime}$ tube.
2-Slide the tube forward and out of the yoke.
B. To reinstall tube:

1-With the tube mounting board removed from the cabinet, carefully slide the neck of the tube through the yoke until the flaring portion seats against the deflection yoke mounting hood.
2-Reinstall the vinyl tube holding strap, following the instructions on the tube mounting base.
3- The focus coil adjustments should be checked as follows:
a-The spacing between the focus coil and the deflection coil should be approximately $1 / 4^{\prime \prime}$.
b-The kinescope neck should center in the hole in the focus coil when the tube is strapped in place. These adjustments should always be checked.
4-The Dumont 15AP4 glass kinescope tube does not require a beam bender. If any other type glass tube is used which does require a beam bender, it should be installed as outlined under Step 10 of the picture tube installation method for Chassis 140,142 and 146.

RASTER CENTERING ADJUSTMENTS

Vertical and horizontal adjustment of the raster position he within the picture mask is accomplished by means of the nt spring mounted screws on either side of the focus coil. Relative action of the two screws is indicated by the marking on the set backboard.

AGC ADJUSTMENT

Chassis 140 and 142 units below serial No. D903447 were shipped with a provision for optional AGC action on the解 green and white lead from the Head End to the rear tie point on the AGC tie strip (See Figure 14).

NOTE

In making the following adjustments a source of television signal, such as that from a station, should be available, and the set should be allowed to operate for at least 15 minutes before adjustment.

HORIZONTAL SYNC ADJUSTMENT

Normally, all sets should hold horizontal sync throughout If- the entire range of the horizontal hold control. In any case, .) the sync error at either extreme of the horizontal hold control, when the channel selector is switched off channel and back again, should not produce more than 3 or 4 diagonal bands across the screen. If the sync error produces more than 3 or 4 bands, the horizontal frequency must be reser as follows:
1-Set the contrast control for a weak picture, approximately midway in its range.
til 2-Set the horizontal hold control to the extreme clockwise position.

3-Switch the channel selector off channel and back again.
4-If Step 3 throws the picture out of horizontal sync, L111 must be readjusted as follows:
a-Rotate the core in the direction which reduces the number of diagonal bands on the raster.
b-The direction of rotation under Step a. will usually be counter-clockwise. If it is clockwise, the adjustment must be carried beyond the sync pull-in range and back again, so that the pull-in setting is always approached from a counter-clockwise direction. During clockwise rotation, switch off channel and back several times to release sync lock-in.
5-Set the horizontal hold control to the extreme counterclockwise position.
6-Switch the channel selector off channel and back again.
7-If the receiver will not pull in to horizontal sync with the horizontal hold set at the counter-clockwise extreme, it may be necessary to compromise the adjustment of L111 slightly; however, it is preferable to have best pull-in action at the extreme clockwise position.
8-Set the horizontal hold control by observing the top portion of the picture and setting the control at the point at which there is no distortion of the vertical lines in this region. This should be near the center of the range of the horizontal hold control.
9-If the above adjustments will not correct the horizontal sync pull-in, it is possible that L113 is misadjusted. The setting of L113 is normally fixed at from 60% to 100% of its maximum inductance and must be within this range for proper horizontal sync operation. This setting is indicated by a core stud extension of $1 / 2^{\prime \prime}$ or less (See Figure 4 for the location of L113).
10-Ser L113 within its normal range, and readjust L111 as in step 4.

HORIZONTAL LINEARITY ADJUSTMENT

Chassis 140, 142, 146

Adjustment of the horizontal linearity on these chassis is most conveniently effected by means of C159, the horizontal drive condenser. Because of the nature of the horizontal AFC circuit used in this receiver, adjustments in the horizontal output circuit may affect the horizontal frequency (L111) and horizontal hold adjustments. Therefore, if it is necessary to readjust C159, it will also be necessary to recheck the horizontal sync adjustments (See above).

Chassis 143, 147

On these chassis, no horizontal drive control is provided. Instead, R140 is available on the rear chassis apron as an external adjustment or horizontal linearity. The range of adjustment of linearity is varied by means of the core in L116, which is accessible through the extreme right hand opening in the rear chassis apron by removing the set backboard (see Figure 4).

Normally, the factory setting of L116 should not require readjustment in the field and it should be possible to make all necessary horizontal linearity adjustments by means of R140. However, if this is not the case, it may be necessary to reset L116 as follows:

1-Turn the core stud until it extends about $1 / 4^{\prime \prime}$ out of the coil.
2-Check the effect of adjustment of R140.
3-Turn the L116 core stud about 5 turns counter-clockwise.
4-Recheck the effect of R140.
5-Repeat Steps 3 and 4 until the optimum setting of L116 core is found.
As on Chassis 140, 142 and 146, readjustments of the horizontal linearity will require rechecking of the horizontal frequency (L111) and horizontal hold (R181) settings (See Horizontal Sync Adjustment).

WIDTH ADJUSTMENT

Adjustment of picture width is obtained by means of the core in L112, which is available through the hole in the lower left hand rear corner of the high voltage shield can (See Figure 4). Clockwise rotation of the core slug increases picture width, and counter-clockwise rotation decreases it.

On certain sets, it has been found difficult to obtain sufficient width, even with L112 core in the extreme clockwise position. In cases of this kind, the following remedies are recommended:

1-Replace V119, 6BG6G, Horizontal Output.
2-Disconnect one end of L112.
3-Add an . $02,600 \mathrm{~V}$ paper condenser across terminals 5 and 6 of T107, Horizontal Output Transformer.

VERTICAL LINEARITY AND HEIGHT ADJUSTMENTS

The vertical linearity and height adjustments on Chas $140,142,143,146$ and 147 are conventional potentiome adjustments located on the rear chassis apron. For a giv setting of the height control, counter-clockwise rotation of vertical linearity control compresses the top half of the P ture, and decreases the overall picture height. Clockw rotation of the height control increases the vertical size the picture uniformly.

TEST EQUIPMENT

For complete and thorough servicing of any TV rece the following test equipment is considered essential. In ticular, no alignment of a receiver should be underta without this equipment.
1-RF Sweep Generator meeting the following minin requirements:
a-Frequency Ranges
18 to $30 \mathrm{Mc}, 10 \mathrm{Mc}$ sweep width
For Head End alignment, the following is also ne sary.

50 to $90 \mathrm{Mc}, 15 \mathrm{Mc}$ sweep width
170 to $225 \mathrm{Mc}, 15$ sweep width
b -Output adjustable with at least 0.1 volt maxim
2-Cathode-ray Oscilloscope with a sensitivity of the o of $0.1 \mathrm{~V} /$ inch.

3-Signal Generator to provide the following crystal trolled or crystal calibrated frequencies:

21.6 Mc Sound IF and Sound Traps 26.1 Mc Video IF Carrier

In addition, picture and sound RF carrier frequencies r be provided as required for Head End alignment (See Ser Data No. 18).
4-DC Voltmeter 20,000 ohms per volt or vacuum tube with high voltage multiplier probe to permit reading 15 KV .

5-(Optional) Heterodyne Frequency Meter for Head alignment, providing crystal calibrated frequencies as quired
The picture tube in the television receiver may also be sidered a tool in the servicing of the receiver, since the dition of the information on the screen, together with indications often serves to establish or at least localize trouble in a receiver in need of repair.

The following sections of this publication are devote data pertinent to the use of the above equipment in the se ing of Hoffman Chassis 140, 142, 143, 146 and 147.

OSCILLOSCOPE PATTERNS

Following is a tabulation of waveforms taken at var points in the circuit of Chassis 140, 142, 143, 146 and together with pertinent data on methods of connecting oscilloscope.

```
MODELS 610, 612, 820, 821,
822, 826, 827, 828, 912, 913
```

eceiver, In par ertaken

PART!ALLY INTEGRATED VERTICAL SYNC JUNCTION R157, R158 O.H.F. 60 CYCLES.

SINGLE HORIZONTAL SYNC PULSE $\begin{array}{lll}\text { PIN } 7 & \text { V115 } & \text { O.H.F. 15,750 CYCLES }\end{array}$

PHASE COMPARATOR PULSE PINS 1 G 2 V116 O.H.F. 15,750 CYCLES PIN 2 VII3A O.H.F. 60 CYCLES

COMPOSITE HORIZONTAL SYNC PIN 6 V115 O.H.F. 30 CYCLES

CONNECTIONS TO OSCILLOSCOPE MADE FROM INDICATED TUBE PINS TO GROUND. BLOCKING CONDENSER . 005 mfd . USED WHEN $\mathrm{B}+\mathrm{IS}$ PRESENT.
O.H.F. OSCILLOSCOPE HORIZONTAL FREQUENCY, INDICATED FOR EACH WAVEFORM.

ALIGNMENT TABLE

CHASSIS
Fig. 6

The detailed alignment procedure
should be read before alignment by use of the table is attempte

8000 Hose		$\begin{gathered} \text { sionect } \\ \text { Conocese } \\ \text { Mes. } \\ \text { Me. } \end{gathered}$	$\begin{aligned} & \text { Ceanost } \\ & \text { sereep } \\ & \text { comeroter } \\ & \text { To } \end{aligned}$	$\begin{gathered} \text { sweop } \\ \text { conerater } \\ \text { Sveep-: } \\ \text { bend } \end{gathered}$		Conneet Voltmeter Te	Misc eMameews Cennections and Instrucilens	Adunt	$\begin{gathered} \text { Roter } \\ \mathrm{T}_{0} \end{gathered}$
VIDEO IF AND SOUND TRAP AIJJUSTMENT									
1	Pin 5 mixer stage. See Fig. 10	21.6	Not Used		Not Used	$\begin{aligned} & \text { Pin 7, V110 } \\ & \text { See Fig. } 11 \end{aligned}$	- 3V (battery) AGC	Conv. trap for min. on meter.	
2	"	21.6	"		"	"	"	T103 for min.	
3	"	22.1	"		"	"	See cautions in text.	Conv. video peaking for max. on meter.	
4	"	25.6	"		"	"	"	L101 for max.	
5	"	22.1	"		"	"	"	L102 for max.	
6	"	24.7	"		"	"	"	L103 for max.	
7	"	23.4	"		"	"	"	L104 for max.	
8	Mixer grid (lioosely)	-	Pin 5 mixer stage. See Fig. 10	Center Freq. 24.1 No sweep	"	"	$\begin{aligned} & \text {-3V (battery } \\ & \text { AGC } \end{aligned}$	Sweep atten. for 2 V on meter.	
9	$"$	$\begin{aligned} & \hline 26.1 \\ & 22.3 \\ & \hline \end{aligned}$	"	4 Mc wide	$\begin{aligned} & \hline \text { Pin 7, V110 } \\ & \text { See Fig. } 11 \\ & \hline \end{aligned}$	Remove	"	L101, L102, L103 (L104 as req.	Fig. 1
SOUND IF AND DETECTOR ADJUSTMENT									
10	"	21.6	Pin 5 mixer stage. See Fig. 10	Center Fref. 21.6 300KC wide	$\begin{gathered} \text { Pin 5, V103 } \\ \text { See Fig. } 11 \end{gathered}$	Not used	Disconnect C108	T100 \& T101 (bottom)	Fig. 14
11	"	21.6	"	"	Junct. C107, R104. See Fig. 14	"	Reconnect C108	T101 (top) to center marker on " S " carve	Fig. 1
12 Repeat steps 1 and 2.									
TUNING UNIT ADJUSTMENT									

ALIGNMENT DATA

The detailed alignment procedure which follows is intended primarily as a discussion of the method used, precautions to be taken and the reasons for these precautions.

For more convenient use in actual alignment, Figure 6 presents the alignment data in tabular form. Although the data in Figure 6 is complete, its use in alignment should not be attempted until the detailed procedure following has been

read.
 ORDER OF ALIGNMENT

When a complete receiver alignment is necessary, it should be performed in the following order:

> Video IF Transformers (including Sound Traps)

Sound IF Transformers
Sound Detector
Recheck Traps
Head End
Sensitivity Check

VIDEO IF AND SOUND TRAP ADJUSTMENT

Two methods of Video IF adjustment are presented in this section. The first or fixed frequency method is recommended for use only on sets which are known to be completely out of alignment, and must be followed by a retouching adjustment using the second or sweep method.

		1	2
V101	6AU6	0	0
V102	6AU6	0	0
V103	6AL5	.19*	.19*
V104	6AV6	-.74*	0
V105	6K6	NC	6.2
V106	6AGS	$-.75^{*}$. 60
V107	6AG5	-.61*	. 68
Vros	6AU6	0	0
V109	6aU6	0	0
V110	6als	0	$-1.4{ }^{*}$
V111	6AC7	0	6.2ac
V112	6SN7	8^{10}	18
V113	65N7	0	11
V114	65N7	-79	$5.8{ }^{*}$
V115	$6 C_{4}$	12:3	NC
V116	6ALS	--74	-74
V117	504	NC	. 280
V118	6SN7	--75	40.5
V119	6BG6	NC	6.2 ac
V121	6W4	NC	NC
		1	2
V122	KINE	0	12.5

All DC readings taken on 20,000 o
All AC readings taken on 5,000 ol

- Readings taken on vacuum tub
"-Voltages measured between pir
x-Brilliance and contrast control
-Brilliance at minimum, contra
- Brilliance at maximum, contrast

CAUTION
Since the Vide broad-band am regenerative os must be taken alignment.
Input and output de as outlined under Step

If sustained oscillati two or more of the quency. If such a con to minimum inductan

SOUND TRAP ADJ
1-Connect a resistive the 6 J 6 mixer tube ing cautions:
All leads must be ke

SSIS 140, 142, 146 SOCKET VOLTAGE CHART Fig. 7

2	3	4	5	6	7	8
0	0	6.2ac	122	122	. 88	-
0	0	6.2ac	122	122	. 90	-
.19*	6.2ac	0	.41*	0	0	-
0	0	6.2ac	NC	NC	65	-
6.2	238	250	0	NC	0	16.8
. 60	6.2 ac	0	119	126	. 53	" -
. 68	6.2ac	0	84	124	. 69	-
0	0	6.2 ac	89	118	. 72	-
0	0	6.2 ac	71	118	. 72	-
1.4*	0	6.2ac	$\begin{gathered} \mathbf{0}^{\mathrm{x}} \\ \mathbf{1 . 3} \end{gathered}$	0	.55*	-
2ac	$\begin{gathered} 12.2^{x} \\ 1.6^{x} \\ \hline \end{gathered}$	$\underset{0^{x}}{9.8^{x}}$	$\begin{gathered} 12.2^{\mathrm{x}} \\ 1.6^{\mathrm{V}} \\ \hline \end{gathered}$	127	0	234
18	0	$-\frac{36^{x}}{0^{2}}$	129	$\begin{aligned} & -62^{x} \\ & +7.6^{x} \end{aligned}$	0	6.2ac
11	$\begin{aligned} & 1.5^{10} \\ & 2.3^{10} \end{aligned}$	-2.7*	116	0	6.2ac	0
$5.8{ }^{\circ}$	-74	-73	189	-72	6.2ac	0
NC	0	6.2 ac	123	0	6.6	-
-74	6.2ac	0	-70	0	-82	-
280	NC	265ac	NC	265ac	NC	280
0.5	-66	-66*	156	-66	0	6.2 ac
.2ac	-67	NC	-81	NC	0	162
NC	320	NC	260	NC	320	6.One" ${ }^{\text {² }}$
2	10	11	12	n.v. amoer		
\|2.5	257	8.2	6.2ac	7.5KV ${ }^{\text {x }}$		

00 ohm per volt meter except as noted.
00 ohm per volt meter.
tube volt meter.
n pins 7 and 8.
itrols at minimum
itrast at maximum.
trast at minimum
'ideo IF stages are all single tuned amplifiers, they are quite subject to oscillation, and several precautions cen to avoid this condition during
decoupling networks must always be used iteps 1 and 4 below.
lation occurs, it will usually be found that e tuned circuits are set near the same freondition does occur, adjust L103 and L104 :ance.

DJUSTMENT

ive pad as shown in Figure 9 to pin 5 of ibe in the Head End, observing the follow-

All resistors used must be of the composition type. Since many low value resistors are wire wound, with a composition case, it is advisable to break and examine a sample resistor of each size to be used.

All input ground connections must be made to the center shield plate in the Head End (See Figure 10).
2 - Connect the output of the signal generator to the network input.
3-Connect the positive terminal of a 3 V battery to chassis, and the negative terminal to the AGC bus (Junction R122, R118, R119, and C118).
4-Connect a decoupling network as shown in Figure 11 to pin 7 of the Video Detector (V110, 6AL5) again using only a composition resistor.
5-Connect the voltmeter from point " X " of the decoupling network to ground.
6-Set the signal generator to 21.6 Mc , and adjust the attenuator to give a reading of approximately .5 volt on the voltmeter.
7-Tune the converter trap (top adjustment on the converter transformer) and carhode trap (T103) for minimum reading on the voltmeter, increasing generator output as necessary to maintain meter deflection at approximately .5 volt.

KEEP LEADS SHORT
AS POSSIBLE IN THIS SECTION

Fig. 9 INPUT ISOLATION PAD

CHASSIS 143, 147 SOCKET VOLTAGE CHART
Fig. 8

		1	2	3	4	5	6	7	8
V101	6AU6	0	0	0	6.2 ac	130	130	. 95	-
V 102	6AU6	0	0	0	6.2 ac	130	130	. 8	-
V103	6 AL5	.2*	.5*	6.2 ac	0	.55*	0	0	-
V104	6AV6	-1.0^{*}	0	0	6.2 ac	NC	NC	68	-
V105	6 K 6	- NC	6.2 ac	240	252	0	NC	0	17
V106	6AG5	-1.8^{*}	. 8	6.2 ac	0	123	130	. 8	-
V107	6AG5	$-.75 *$. 75	6.2 ac	0	95	130	. 75	-
V108	6 AU6	0	0	0	6.2 ac	92	125	. 82	-
V109	6 AU6	0	0	0	6.2 ac	76	128	. 6	-
V110	6 AL5	0	-.9*	0	6.2 ac	$\begin{gathered} 0^{\mathrm{X}} \\ 1.3^{\mathrm{Y}} \end{gathered}$	0	.6*	-
V111	6 AC7	0	6.2 ac	$\begin{gathered} 11.2^{\mathrm{x}} \\ 1.5^{\mathrm{Y}} \end{gathered}$	$10 . \frac{2}{0}^{x}$	11.5^{x}	140	0	248
V112	6SN7	$\begin{gathered} -7^{\mathrm{Y} *} \\ .8^{\mathrm{x}}{ }^{0} \end{gathered}$	21	0	$\begin{gathered} -56^{x} \\ 0^{z} \end{gathered}$	129	$\begin{gathered} -55^{x} \\ 8.0^{\prime \prime} \end{gathered}$	0	6.2 ac
V113		0	14.5	$\begin{aligned} & 1.5^{\mathrm{x} *} \\ & 2.3^{\mathrm{Y} *} \mathrm{U} \end{aligned}$	$-2.7^{\text {U* }}$	105	0	6.2ac	0
V114	6SN7	-117	6.3*	-98	-90	254	-86	6.2 ac	0
V115	$6 \mathrm{C4}$	128	NC	0	6.2 ac	128	0	7.0	-
V116	6AL5	-97	-97	6.2ac	0	-90	0	-100	-
V117	504	NC	297 .	NC	$385 \mathrm{ac}{ }^{\text {r }}$	NC	$385 \mathrm{ac}{ }^{*}$	NC	297
V118	6SN7	-102	40.5	-87	-98*	165	-87	0	6.2 ac
V119	6BG6	NC	6.2 ac	-88	NC	-117	NC	0	200
V121	6W4	NC	NC	350	NC	275	NC	350	$6.1 \mathrm{ac}{ }^{\prime \prime}$
V124	504	NC	297	NC	$385 \mathrm{ac}{ }^{\text {v }}$	NC	$385 \mathrm{ac}^{\text {V }}$	NC	297
		1	2	10	11	12	H.V. ANO		
V122	KINE	0	$\begin{gathered} -56^{x} \\ 8.0^{\prime \prime} \end{gathered}$	270	11^{x}	6.2 ac	$13 \mathrm{KV}{ }^{\text {²}}$		

IF ALIGNMENT, METHOD I

Fig. 11 DECOUPLING NETWORK

With the signal generator and voltmeter connected as above, set the signal generator to each of the following frequencies and peak the specified adjustments for maximum indication on the voltmeter. (The signal generator attenuator should be set to give a maximum meter reading of approximately 1 V .)
22.1 Mc Converter video peaking adj. (small, single tuned coil on Head End, immediately beside converter transformer, see Figures 1 \& 2)
25.6 Mc L101
22.1 Mc L102
24.7 Mc L103
23.4 Mc L104

All DC reading All AC reading
*-Readings tal
${ }^{r}$ - Sync voltage
v-Measured to
"-Voltages me
x-Brilliance ar
Y-Brilliance at
\%-Brilliance at
IF ALIGN
1-Connec tube in type de
2-Connec
3-Set the 3 above
4-Turn o center 24 Mc .
5-Adjust reading
6-Loosely mixer pend o by the inserted vide sul the sig to use input n used to but the
7-Set the signal 12 as a
9-Repeat
10-Referr it may the add Thus th correct and res approxis must be SOU
1-Connec Alignm
2-Connec Figure

3-Discont
4-Connec the isol
5-Loosely sweep
б-Turn
7-Adjust near 2

8-Set the
9-Set the 3 V or
10-Set th
11—Adjus produc 13, wi
readings taken on $20,000 \mathrm{ohm}$ per volt meter except as noted. ; readings taken on 5,000 ohm per volt meter.
dings taken on vacuum tube volt meter.
c voltages vary with signal. These values for general guidance only. sured to transformer center tap.
tages measured between pins 7 and 8.
lliance and contrast controls at minimum.
liance at minimum, contrast at maximum.
liance at maximum, contrast at minimum.

: ALIGNMENT, METHOD II

-Connect the sweep generator to pin 5 of the 6 J 6 mixer tube in the Head End, through an input filter of the type described under Step 1 above.
-Connect the voltmeter and oscilloscope as in Step 5 above. -Set the AGC voltage at -3 volts as described in Step 3 above.
-Turn off the sweep in the sweep generator and adjust center frequency for maximum voltmeter reading near 24 Mc .
-Adjust the sweep generator attenuator for a voltmeter reading of 2 volts.
-Loosely couple the signal (marker) generator to the mixer stage. The exact method of coupling used will depend on the output impedance and signal level produced by the signal generator. In some cases an insulated wire, inserted between the mixer tube and its shield will provide sufficient coupling when connected to the output of the signal generator. In other cases it may be necessary to use direct resistive coupling to the sweep generator input network. In any case sufficient coupling must be used to provide good readable markers on the oscilloscope, but the coupling must not "pull" or detune the mixer stage. -Set the sweep generator sweep width at 10.0 Mc , and the signal generator markers at $26.1 \cdot \mathrm{Mc}$ and 22.3 Mc . -Adjust pass band characteristics using the curve in Figure 12 as a guide.
-Repeat Steps 4, 5 and 8.
-Referring to the composite IF curve shown in Figure 12, it may be seen that the overall IF response is a function of the additive effect of the individual stagger-tuned coils. Thus the particular coil or coils requiring adjustment to correct errors in the overall response curve may be selected and reset. After final adjustment, the curve shape must approximate that shown in Figure 12C and the markers must be within the ranges specified.

SOUND IF AND DETECTOR ADJUSTMENT

-Connect the sweep generator as in Step 1 under Video IF Alignment, Method II.
-Connect point "W" of the isolation network shown in Figure 11 to pin 5, V103.
-Disconnect one end of C108.
-Connect the oscilloscope and voltmeter to point " X " of the isolation network.
-Loosery couple the signal (marker) generator to the sweep input as in Step 7 under Video IF Alignment, Method II.
-Turn off the sweep on the sweep generator.
-Adjust the sweep generator for maximum meter reading near 21.6 Mc.
-Set the signal (marker) generator at 21.6 Mc .
-Set the sweep generator attenuator to give a reading of 3 V on the voltmeter.
0 -Set the sweep width at approximately 1 Mc .
1—Adjust T100 top, T100 bottom and T101 bottom to produce a response curve similar to that shown in Figure 13 , with the 21.6 Mc marker located as shown.

12-Move point "W" of the isolation network (Figure 11) to the junction of C107, R104 and R107. Leave the oscilloscope connected to point " X ", but remove the voltmeter.
13-Reconnect C108.
14-Adjust T101 top to locate the 21.6 Mc marker in the center of the discriminator " S " curve as shown in Figure 13. Some dissymetry in the non-linear portions of the " S " curve will probably appear, due to AGC action. Do not attempt to correct this dissymetry with the T101 top adjustment.
15-Recheck the Sound Trap Adjustments and repeat Steps 2 through 10 (above).

SENSITIVITY CHECK

As an overall check of receiver performance, the relative sensitivity of the receiver may be compared to that of enother receiver of the same model, by observing comparative performance of the two sets on a weak signal input. If convenient, it is suggested that this senstivity check be performed on all sets which have been completely realigned as a final overall measure of the performance of the receiver. Other intormation relative to band pass, sync operation, linearity, etc. may be checked by observing the test pattern of a station known to be good in all respects.

© John F. Rider

The grid of V101, 1st sound IF is connected to a tap (Terminal B) on the new 21.6 mc . trap, part of T107 Hoffman Part No. 5296, instead of to tuning unit. Reference should be made on the 140, 142, 143, 146 and 147 chassis.

ALIGNMENT DATA

The alignment procedure outlined
may be followed exactly, except that where reference was made to the converter sound trap on the tuning unit, those adjustments will be made on the top slug of T107. It is now absolutely necessary to check alignment with a sweep generator and scope to obtain the desired video IF response after spot adjustment on the individual stagger tuned IF frequencies.

Figure 1 is an abbreviated schematic diagram showing the sound and video IF circuits with the new circuit changes.

REASON FOR MODIFICATION

Investigation has been made of several localized cases of distorted sound on the Hoffman table models, 610 and 612, and consolette models $820,821,822,826,827$ and 828. It was found that multipath effects in these locations were causing random amplitude modulations of the signal and resulting in distorted audio output. Most cases were characterized by critical FINE TUNING adjustment, inasmuch as it is necessary to have the sound ratio detector exactly zeroed to obtain maximum AM rejection, and least distortion.

ADVANTAGES OF MODIFIED CIRCUIT

The changes considerably reduce the response of the ratio detector to AM components in the signal, thereby giving better AM rejection and reducing multipath distortion.
Greater audio recovery from the IF signal gives more audio output.

The response to ignition and other noises is decreased.

CIRCUIT CHANGES

To modify the ratio detector, the following circuit and parts changes were made.

Old Part	New Part	Difference		
1000 Mmf	30 Mmf	C107 changed $(\# 4025)$		
To new value				
T101	\#4043)	T101		Primary to
:---:				
(\#5305)				

White wire from R107 to junction R104-C107

C 107 changed to new value

Primary to secondary coupling

Wiring change

The capacitor and wiring changes are made on all chassis after Serial No. F 904866. The new T101 will be installed later on all production chassis. The serial number at which the change occurs will be published at that time.

FIELD CHANGES

Whenever T101 is replaced for any reason, it is desirable to replace the transformer with the new type ($\# 5305-1$) and make the wiring and capacitor changes. It is possible to effect a partial improvement of AM rejection in present sets by making the capacitor and wiring changes.

Realignment of the ratio detector transformer is necessary when any of the changes are made.

ALIGNMENT DATA

A preliminary method may be followed for field alignment.
a. Tune in a TV signal for best picture. This is best adjusted by tuning for minimum 4.5 mc beat which shows up as a grainy appearance, particularly in the vertical resolution wedges.
b. Tune top slug of T101 for clearest sound. Tune both directions until distortion appears, then adjust midway between these points.
c. Tune bottom slug of T101 for maximum sound amplitude and best quality.
The normal alignment method using a sweep generator and scope is outlined

Fig. 15 SCHEMATIC DIAGRAM-

R
2. OLL COILS SHOWN FROM BOTTOM OF CHASSIS. $_{2}$
3. CI7O USED ON CHASSIS 142 ONLY

Fig. 17 SCHEMATIC DIAGRAM-

Fig. 1-Schematic Diagram, Sound and Video IF Stages

$$
\text { Ist SOUND I.F. } \quad \text { 2nd SOUND I.F. }
$$

-

MODELS 610, 612, 820, 821, 822, 826, 827, 828, 912, 913

RATIO

DETECTOR

Wiring Diagram

A production change has been made to secure greater sound sensitivity. The point of sound IF takeoff has been changed from its previous position in the tuning unit to the output of the 2nd video IF. This change takes place on all receivers produced after Serial No. E 906732. In addition, there are 84 TV chassis interspersed between Nos. E 906300 and E 906731 which have the new sound IF system.

In order to change the sound IF takeoff, the following circuit and part changes were made.

Old Part	New Part	Difference
RF4 Tuning Unit	RF6 Tuning Unit	RF6 has video output only, and no con- verter sound trap.
L102 (5298)	T107 (5296)	21.6 mc. trap coupled to 22.1 mc. peaking coil.
-	L117 (5311)	Added to all chassis except 143. - C104 (4036)
	C177 (4029) C104 (4029) and C104A (4029)	RF bypass for ratio detector load resistors. Separate bypass condensers to eliminate coupling in common section.

CRITICAL VERTICAL SYNC.
SYMPTOM: The VERTICAL LOCK adjustment is very critical and will hold the picture steady at only a very small point within its range. There is also a tendency for line voltage surges or other transient effects to cause the picture to skip frames vertically. In extreme cases the VERTICAL LOCK will not hold the picture in sync.

CAUSE: The vertical sync pulse integrating network capacitors, Cl4 , Cl42, and Cl43 develop a high resistance DC leakage of several megohms. As the DC leakage resistance becomes lower, the vertical sync becomes more critical. Capacitors Cl42 and Cl43 are $.005 \mathrm{mf}, 400 \mathrm{~V}$. DC ratings and Cl4l is a . $002 \mathrm{mf}, 400 \mathrm{~V}$. DC rating. The initial turn-on surge vol tage applied to these condensers reaches their rated value and causes a progressive breakdown in some cases. The . 005 mf condensers usually show the first evidence of deterioration.

REMEDY: Replace the three integrating network capacitors with equal capacity 600 V . DC rating parts. The resistors in the integrating network, particularly R155 and Rl56, should be checked to make sure they have not been damaged.

Symbol C141	Ratings .002 mf 600 V	Part No. 4118
C142	.005 mf 600 V	4102
	.005 mf 600 V	4102

Vertical Integrating Network
Schematic Diagram

Placement of Parts

TUNABLE MODULATION HUM-TURRET TYPE TUNING UNITS
TV TURRET TUNER RF3, RF4, RF5, RF6
SYMPTOM: A low frequency hum that is tunable with the FINE TUNING control has been observed in a number of sets. The hum is at its
loudest point when the sound is properly tuned in, and has been observed primarily on the channels where a strong signal is present.
This hum can be reduced by removing one of the antenna leads, thereby reducing the signal.
REMEDY: There are three remedies that have been used in iield service. The first, or capacitor method is recommended. The second and third have disadvantages and should be used only when conditions warrant.
l. Solder a 0.1 mfd paper tubular bypass condenser (voltage rating unimportant) from the test loop (see diagram) to ground on the tuning unit body. Do not ground to the main chassis. The end of the capacitor marked "FOIL" is to be used for the grounded end.
2. A second method is to solder a 5000 ohm, $1 / 2$ watt composition resistor in place of the 0.1 mfd condenser. This method reduces the sensitivity of the tuning unit and also decreases the bias on the 6J6 converter grid, allowing greater plate current flow with resultant increased heating.
3. A third method is to ground the test loop directly. This materially decreases sensitivity in addition to increased current, and should not be used except in very pronounced hum cases, and where very strong signals are available.

TOP VIEW TUNING UNIT

MODELS 826, 827, 828, 912, 913
high voltage arcing around 16 Inch metal tube neck to deflection COIL

SYMPTOM: The most positive symptom is an arcing or sizzling sound originating in the vicinity of the deflection yoke assembly. In many cases this will also cause crackling noise in the sound channel and white or black splashes in the picture.

CAlUSE: Leakage of the high voltage from the metal cone across the insulating portion allows arcing through the vinylite insulation sml dust cover to the deflection coils.

REMEDY:

1. Looser wing nuts on deflection yoke and pull deflection coil assembly back from the cone of the 16 inch tube, towards the focus coil.
2. Wrap two or three turns of vinylite tape around the base of the tube cone where it contacts the deflection coils.
3. Replace the deflection coil assembly.

WARNING NOTICE: ALL HOFFMAN TV RECEIVERS USING 15 INCH AND 16 INCH TUBES MOUNTED SEPARATE FROM CHASSIS

CAUTION: DO NOT OPERATE OR SERVICE SETS WHEN THE DEFLECTION C IL AND FOCUS COIL ASSEMBLY PLUG HAS BEEN REMOVED FROM ITS RECEPTACLE ON THE MAIN CHASSIS.

The focus control, Rl72, will be burned out because entire focusing current will be passed through this control, if the shunting focus coil is not in the circuit.

The horizontal and vertical deflection circuits may be damaged if operated in an unloaded condition, such as would result from removing the deflection coils from the circuit.

NVW』JOH

CHASSIS 140, 142, 143, 146, 147

CHANNEL 13 PICTURE INTERFERENCE FROM SOUND IF REGENERATION

SYMPTOM: A fine herringbone-like interference pattern is produced on Channel 13 only, when the sound FINE TUNING is adjusted correctly for the best sound reproduction. Tuning slightly off the best sound point will usually eliminate or reduce the interference pattern. This interference may also he noted during alignment, showing up when the set is properly aligned and tuned. The interference will. disappear or diminish when the sound IF string is misaligned, often requiring only a slight detuning of the 2nd sound IF to eliminate the interference.

CAUSE: Regeneration in the sound IF string and failure of the electrolytic capacitor, Cl08, to act as an efficient RF bypass allows an interfering signal to get into the picture amplifiers and cause an interference pattern on Channel 13.

REMEDY: The combination screen and cathode bypass condenser for Vl02, 2nd sound IF, is a dual type. 004 mfd condenser. This should be removed and replaced by two separate .005 mfd , ceramic type capacitors (Hoffman Part No. 4029). The separate capacitors are shown as ClOL and ClOLA in the schematic of the Modified. Sound Detector as shown in Production Changes.An additional bypass', . 005 mfd (No. 4029), should be placed in parallel with the ratio detector load capacitor, Cl08.

These changes do not affect the sensitivity of the sound IF; yet they make the IF strip less "hot" for ease in tuning and alignment, in addition to eliminating the interference on Channel 13.

BURNOUT OF CONTRAST CONTROL

MODELS	CHASSIS
610	140
612	142
$820,821,822$	146
$826,827,828$	143
912,913	147

SYMPTOM: Any of several symptoms may be present, or combinations of symptoms will occur. The major indications are: no picture: sound OK; poor picture with contrast control partially or totally inoperative; contrast control open, and excessive cathode voltage on Vlll.

CAUSE: The video amplifier, Vlll, 6AC7, shorts, or shorts intermittently and causes excessive current to pass through the contrast control, Rl37. This will completely destroy the control, or burn spots beyond which the control is not operative.

REMEDY:- Replace the 6AC7, Vlll, and then replace the contrast control. The type GAC7 tube may be replaced with a tube which is not suitable for a horizontal sync control tube in the Hoffman 30 tube chassis, 135,141 or 145 . However, this tube must be selected so that it draws sufficient plate current to produce 1.6 volts or more cathode bias measured across Rl36 with the contrast control set at maximum clockwise rotation. This amount of cathode bias will in-
indicate a tube that has sufficient output to produce the best picture.

Never replace the contrast control without first checking the 6AC7 and its circuit components.

	VERTICAL LINEARITY
MODELS	CHASSIS
826, 827,828	143
912,913	147

SYMPTOM: Vertical compression or expansion of the top portion of the picture is controlled by the Vertical Linearity control, R169. Clockwise rotation of this control expands the top section of the picture. There is a certain amount of interaction with the vertical size control, R160, so that Rl69 also causes some change in the vertical size of the picture. The difficulty occurs primarily in sets using the 15 inch and 16 inch tubes, and is evidenced when the top of the picture is compressed even though the Vertical Linearity control is in its maximum clockwise position.

CAUSE: The maximum height adjustment usually required to fill the mask vertically on the 16 inch sets tends to stretch the bottom portion of the picture, which then produces the appearance that the top portion is relatively compressed. This relative compression. must be compensated for by the Vertical Linearity control.

REMEDY: The relative range of the Vertical Linearity control, Rl69, can be increased by reducing the value of the series cathode resistor, R168, to 150 ohms. This may be accomplished by replacing Rl68 or paralleling the present 560 ohms with an additional 220 ohm resistor.

The value of Rl70, B+ dropping resistor in the vertical output plate circuit, should be checked. If the resistance of Rl70 is greater than 1000 ohms, it should be replaced by a resistor of that value. Present production is using 1000 ohm resistors; however, a number of 16 inch sets were produced with 2700 ohm resistors, and the 10 inch or 12 inch sets are manufactured with 6800 ohm resistors.

Try several different 6 SN 7 tubes in the Vll4 position. The output of various manufacturers' tubes is not the same and it is often possible to select a tube which will give the desired performance without circuit changes. The GSN7 for the position of V1l4 may be interchanged with Vll2, Vll3 or Vll8.

NECK SHADOWS

MODELS	CHASSIS
610	140
612	142
$820,821,822$	146
$826,827,828$	143
912,913	147

SYMPTOM: Shadowed or dark blurred edges or corners on the picture are neck shadows. They may occur on right or left edge or any corner, but most frequently they appear at the right top corner
(f'acing toward tube), or along the whole right side of the picture. The incidence of neck shadows has been highest on Hoffman sets using the Dumont 15 AP 4 picture tube. To a lesser extent, the sets with the RCA 16AP4 tube and a few $12^{\prime \prime}$ and 10 " sets have neck shadow difficulties.

CAUSE: The shadows are caused by obstruction of the electron beam in its maximum sweep position. As the deflection yoke bends the electron beam to its maximum horizontal deflection, the beam strikes the neck of the tube near a position where the tube enlarges into its conical section. The beam is diffused and does not strike the sensitized screen on the face of the tube.

There are several reasons why the beam may strike the tube neck. The deflection yoke or focus coil may be placed too far back on the neck. The tube neck may be off center in the focus coil, either because the tube is not mounted horizontally, or the axis of the tube neck is not on the same line as the major axis of the tube.

CAUTION

Do not attempt to compensate for neck shadows by misadjusting the ion trap. The ion trap must be adjusted to give maximum brightness. Follow the instructions in Service Data for these adjustments.

EEMEDY: A number of remedies are suggested. Any one, or combination of several, may be necessary to clear up the trouble.

The primary objective of the remedies is to make certain that the tube is mounted with the neck horizontal as compared with the chassis, and exactly centered in the deflection and focus coils. With 15- or l6-inch tubes mounted separately from the chassis, it is generally advantageous and faster to remove the mounting koard and tube from the cabinet.

Check the tube mounting. It is imperative that the tube neck axis Z - Z, shown in the side view, be level and concentric with the centers of the deflection and focus coils. The front portion (face) of the tube may be raised by shimming with rubber pads under the front rim where the tube is held in place by the vinyl-resin strap. The rear of the tube may be raised by shimming at points E with thin wood strips or metal washers. On some tubes the axis of the neck does not coincide with the axis of the bulb, and the neck appears to be cocked off at a slight angle. In lining up this type of tube, make the neck level and true with the focus coil to aid in elimination of neck shadows.

Rotate the tube in its mountings. It may be necessary to extend the high voltage lead to accomplish the rotation. This treatment is particularly effective if the tube neck is slightly off center.

Check the positioning of the deflection yoke and focus coil. They should be as far forward as possible. Loosen the wingnut A and slide the deflection coils to their maximum forward position. Loosen wingnuts B and slide the entire deflection yoke bracket securely up on the cone of the tube. Slide the focus coil bracket
as far forward as possible. The bracket is slotted to allow adjustment when hold-down screw D is loosened. Approximately $1 / 8$ inch spacing.between deflection and focus coils must be allowed for centering adjustments. The centering adjustment screws C should be $13 / 4$ inches long on the 15 - or 16 -inch tube, and $1 / 2$ inches long in the 10 - or 12 -inch tube for maximum range of adjustment. Be sure to loosen the focus-coil locking-screw, found on 15 inch tubes only, before making any centering adjustments.

Reversing the polarity of the focus coil field by reversing the circuit connections (yellow and green wires) will often aid in reducing neck shadows. This also reverses the relative motion of the centering adjustments C. Best results have been obtained when the left screw (seen from the rear) is the vertical adjustment. Individual exceptions to this general condition may occur.

A non-concentric adjustment of the focus coil is occasionally necessary to allow for proper centering and elimination of neck shadows. Set the centering controls in about their middle range and loosen hold-down screws D. Move the focus-coil bracket by hand to any position that gives the best results. Experimentation is necessery, although a slight forward tip to the bracket and coil often achieves results. When the best position is determined, slip washers under the edge of the bracket at any raised point, (such as under one corner, F), and retighten the hold-down screws to maintain this position.

Slight neck shadow conditions may be hidden if sufficient width control is available to more than fill the picture mask. Move the picture slightly off center and then increase the width. The shadowed portion of the picture will be hidden behind the tube mask. It is obvious that this is not a correction, and can be used only. in minor cases, or as a last resort after other methods have eliminated the major portion of the neck shadow.

The major corrections for neck shadow are all a part of the proper alignment of the tube neck, deflection yoke and focus coil.

ELIMINATION OF OSCILLATION IN SOUND CHANNEL
SYMPTOM: Under no-signal conditions, the receiver sound system will break into a low-frequency motorboating when the channel selector is set on any of the low frequency channels. Channel 3 produces the worst condition. When switched to the high frequency channels, the motor-boating gives way to a high freauency "rough" note, that sounds like a bad condition of noise "hash". This condition also affects the raster when no video signal is pr isent, appearing as grainy horizontal lines similar to heavy noise conditions.

This uscillation or motor-boating disappears when a video and sound signal are present. It has appeared only on consolettes with the remote tuning controls. No indications have been observed on any of the other models. This condition should not be confused with audio buzz or oscillation in the audio output tube, both of which are noticeable whether or not sigrals are present.

CAUSE: The long lead to the remotely-located tone-control produces a feedback circuit which allows oscillation to occur. The remedy described below has been accomplished in production on all sets produced after Serial No. F908466. This change has been made in all models to eliminate any possibility of future difficulty.

REMEDY: Move the location of the audio coupling resistor, R107, 15,000 ohms $1 / 2$ watt. An additional tie-point is mounted under one
of the hold-down screws for Tl0l. The resistor, RlO7, is removed from its present location at the tone control, and wired between terminal B of TlOl and the new tie-point. The white wire previously connecting terminal B and Rl07 may be connected from the new tie-point to one end of the tone control where Rl07 was previously wired.

The relocation of Rl07 should be accomplished whenever a modification of the sound detector is made on chassis produced prior to Serial No. F904866. Refer to Service Bulletin for information on the sound detector modification.

THIS SKETCH SHOWS THE NEW POSITION OF RIOT AND THE LOCATION OF SURROUNDING PARTS.

TV CHASSIS $140,142,143,146,147$
HIGH PITCH AUDIO OSCIZLATION
SYMPTOM: A high audio frequency tone which is not affected by the volume control or presence of sound signals can be traced to oscillation in the final audio amplifier. The sound is similar to a microphonic howl, but is not affected by tapping on the chassis. Generally, the amplitude is low and may be partially covered by the sound signal, but is quite apparent during pauses in speech or music.

REMEDY: Solder a bypass condenser, . 002 mfd 600 volt paper tubular (Part No. 4ll8), between plate and screen, pins 3 and 4 of V105, the 6K6 audio output amplifier tube. This correction has been incorporated in all model sets produced after Serial No. F909900.

The abbreviated schematic diagram shows the circuit position of the added condenser.

SYMPTOM: Unstable vertical sync is characterized by a picture that tends to jump or bounce in a vertical direction. At times it appears that only part of the picture is affected. Operation of the VERTICAL LOCK control is normal, and will hold the picture in sync over a normal range of the control. The vertical "bounce" caused by noise pulses occurs erratically, except when consistent noise conditions are present the picture appears to" j iggle". Occasionally, the picture will skip one frame vertically. These conditions in a few cases, are accompanied by spasmodic horizontal tearout of the picture, which is caused by high amplitude noise pulses.

REMEDY: Modification of the sync separator and sync clipper circuits will provide better rejection of noise signals and faster recovery from the effect of noise pulses of high amplitude. The circuit modifications and part changes are listed below.

Old Part
New Part
Difference

R145 (4597)
R145 (4629)

R147 (431.5) R147 (4626)

R147 connected from Vll2 pin 1 to ground

R147 connected from Vll2 pin l to parallel Cl38

Changed from 2.7 K to 5.6 K ohms

Changed from 1 meg to 20 meg

Wiring change

Old Part	New Part
C138 (4109)	C138 (4124)
R149 (4597)	---
R154 (4555)	R154 (4614)
- R207 (4553)	

Rl55 connected from pin 5 Vll3 to tie-point junction Rl57, C141

Changed from .05 mf to .02 mf, 600 V

Short out or remove from circuit

Changed from 680 K ohms 1/2 watt to 1 megohm 1/2 watt, 10\%

R207 (1.2 K ohms, $1 / 2$ watt) and R156 form voltage divider network for vertical sync pulses

Wiring change

These modifications have been made on all Hoffman television receivers produced after Serial No. G910973. Fig. l is a schematic diagram of the sync circuits showing the modified wiring and new perts values. The resistance value of R145 is 10,000 ohms in sets prior to Serial No. E904712, and must be changed to the new value. Removal of Rl49 from the circuit, and reconnection of Cl39 to R151 produces an empty tie-point that may be used for the junction of R207, R156, and R155. Two additional changes that have been made in production to aid in stabilizing the vertical sync should be included in all sets at the same time that modification of the sync circuit is accomplished. The portion of the circuit in which these changes are made is not shown in Figurel.
old Part

> IVew Part

Difference

Cl28 (4012) C1.28 (4048)

R167 (4559) R167 (4618)

Decreased from 100 mmf to 27 mmf, 10\%

Increased from 47 K ohms to 220 K ohms, $1 / 2$ watt to improve $B+$ regulation for V1l4A

The changes outlined for modification of the sync circuits apply for sets operated in low signal areas, where the average noise level approaches the signal level. In areas where normal signal and noise conditions exist, no advantage is gained by modifying present sets now in operation.

Conditions of weak signal with very heavy noise or high amplitude noise pulses may exist in a few locations. In these cases, a different time constant for the Rl47-Cl38 circuit will give better noise rejection performance. For better noise rejection, use $.25 \mathrm{mf}, 600$ volt (4116) for C138 and 1.0 megohm, $1 / 2$ watt (4614) for R147 in place of the values listed in the modification chart. The circuit wiring will still be the same as shown in Fig. l for either of the alternate sets of components. Better noise rejection is gained at the expense of sync separation, and vertical lines in the picture may exhibit slight waves or curves. The use of this
alternate modification is limited to special circumstances best judged by the individual serviceman.

This alternate modification will not be accomplished in factory production, and is primarily intended for a field service measure in special cases.

CIRCUIT MODIFICATIONS - ALL MODELS
A modification that can be applied to all Horfman chassis has many advantages in controling the AGC voltage amplitude and recovery time. This modification allows the sync amplitude to be set just below limiting which will effectively decrease the sensitivity to noise pulses and will aid in maintaining sync stability. The curve in vertical lines in the top portion of the picture, commonly known as a "hook", is eliminated. Better contrast at low signal levels is another advantage.

The circuit changes allow the AGC voltage to be developed only during the period when sync pulses are present, which means chat in \dot{a} sense the $A G C$ voltage is keyed by the sync pulses of the composite signal. Actually, the voltage is developed only during the sync pulse period, but a charge is maintained on the AGC circuit condenser Cl28, which provides a near constant AGC voltage. This charge leaks off tirough Rl3l so that long term amplitude changes of the signal will increase or decrease the AGC bias to compensate for the signal change.

The information in these service notes should be used with Strvice Notes headed "Unstable Vertical Sync", because some of the changes discussed there are rescinded by these notes. The AGC circuit changes compliment the sync changes, and the two must be combined to obtain full utilization of either change.

Refer to the original service data for the circuit and placement of perts that are to be chenged or deleted.

The schematic with this bulletin illustrates the circuit after the modifications have been completed.

The circuit modification and parts changes are listed below.

0ld Part	New Part	Difference
R134 (4571)	---	Remove from circuit
C131 (4112)	---	Remove from circuit
C128 (4048)	C128 (4012)	*Changed from 27 mmf to 100 mmf, N750 ceramic
---	R149 (4597)	*Added to 2nd Sync separator grid circuit
R137	Wiring Chenge	See wiring change below
C130	Wiring Change	See wiring change below

*Removal of Rl49 from the circuit and the capacity of Cl2 8 as 27 mmf are described in service notes titled "Unstable Vertical Sync", and have been accomplished at the factory only on sets produced after Serial No. G910973. The AGC modification returns these two parts to their original values, and therefore these changes are not needed on sets produced prior to this serial number. However, it is advisable to check through the AGC and sync circuits of any set being modified to assure that the parts and wiring conform to the desired modification.

WIRING CHANGES: The CONTRAST control, R137, is changed from a potentiometer type of operation to a rheostat type of operation. In an unmodified set, a green wire runs from one side of Rl37 to a tie-point junction of Cl3l, Rl34, and a wire from pin 5 of Vllo, video detector, Remove this green wire from the connection on R137 and resolder the end to pin 2 of Vll3A, 2nd sync separator. Cl3l and Rl34 can be clipped from the circuit, and tha changes accomplished with a minimum of resoldering.

After Rl34 is removed, on-half of the dual by-pass, Cl30, is still tied into the +140 supply string. Leave this connection intact as it provides by-passing for the +140 supply.

The AGC circuit changes have been accomplished on all sets currently available at the manufacturer's plant, and all sets so modified have been marked with "8-15" directly below the serial number on the rear of the chassis. These modifications will be incorporated in the manufacturing prodedure on all sets produced with serial numbers beginning with I 9----- or higher.

Capacity changes in the video detector circuit will affect the tuning of LlO4, 4 th video IF peaking coil. A check of the IF bandpass and repeaking of LIO 4 to 23.4 mc is necessary after all modifications have been completed.

The AGC and svnc circuit changes have many advantaces and should be made in all cases where "hook" or sync stability (vertical bounce) problems are encountered.

CHASSIS 140, 142, 146 PARTS LIST

CHASSIS 140, 142, 146 PART

S'ymbor	leserin
121:6;	1500 hm
R1:37, 121:4	. M Mk 1000 (hmm Pot.
	(Brillance Contrast) (Chassis 140)
	1 Mry 10061 Ohm Pot. (Brilliance. ©ont rast)
	(Chassix 142 \& 146)
R1:38	Sre 1.107 *
R13:39, 121.46, R1:5	22,000) 9 hm
12140	3:300) 10 hm
R141, R142, R1.43, R147, R184, R19G	1 Meg
R15:3	$\because 0 \mathrm{Mag}$
R156	270010 hm
R15!	1 Mrg
13160	1 Meg Pot. (Vertical Hold) (Chassis 140)
	I Mek Iot. (Vertical Hold) (Chassis 142 \& 146)
R1:161	
1316:3	33300 Ohm
12164	1.f. Mrk
8165	2.2 Mrek en kertical
R166	2.5. Mey Pot. (Vertical Size)
12167 12200	47.0000 Ohm
R16168 R169	50(i) (hm 5,000 0hm Pot.
R169	(Vertical Linearity)
$\mathbf{R 1 7 0}$	6R00 0 hm
R171	2500 Ohm (W.W.)
18172	1500 (hmm Pot. (Focus)
R17:3	1000 Ohm
13174	:3000) Ohm (:T. (W.W.) Candoh
R175, R185	1000 hm
K176	1500 (1)
K177	25.0000 hm (W.W.)
R178	1660 (hmm (W.W.) Candohm
12179	56000 Ohm
K180	150,0000 Ohm
K181	50,000 Ohm Pot. (Horizontal Hold)
R182	220.000 Ohm
1 183	6 k Ohm
R186	10,000 Ohm
R187	3.3 Ohm
R188	1 Mek
1818!	5R(0)-5.50)-500 Ohm (W.W.)
R202, 12203	5680 Ohm
R205	10,010 Ohm
R206 *	1500) Ohm (W.W.)
$\begin{aligned} & \text { L.101, L.102, L.10:3, } \\ & \text { L104 } \end{aligned}$	Picture 1F Coil
L105, 1,106	Praking Coil, 140 mh
1.107, K138	Praking ('oil, 200 mh on $22,1000 \mathrm{Ohm}$
1.108	Peaking Coil, 280 mh
1.109	Filter Choke
1.110	Focus Coil
1.111	Horizontal Oscillator Coil
L112	Width Control
L113	Horizontal Linearity Control
L114, L115	Weflection Yoke Assembly
T100	1st Sound If Transformer
T101 T102	Ratio Detector Transformer Audio Output Transformer
T102	$\begin{aligned} & \text { Audio Output 1rai } \\ & \text { (Chassis 140, 142) } \end{aligned}$ (Chassis 146)
T103	Cathode Trap Transformer
T104	Vertical Oscillator Transform
T105,	Vertical Output 'Transformer
T106	Power Transformer
T107	Ilorizontal Output Tarnsform
F100	Fuse 1/8 amp 250. V
Slot	On-Off Switeh (Part of R10
	Ac' Cord with Interlock Jack

CHASSIS
CHASSIS 140, 142, 146 PARTS LIST (Cont'd)

Stumbol	"\%scription			Hoffiman Prart No.
R1:3	1500 Ohm	' 10'	':W Comp.	4616
R1:37, 121:4	I Mek 10000 hm Pot. (Brilliance ('ont rast)			
	(1 hassis 140)			4816
	1 Mifk 1000 (Ohm Pot. (Rrilliance.('ontrast)			
				4822
R1:38	Sre 1.107 a			
R1339, R1/46, R15:5	2e.060) (17mm	${ }^{+} 20^{\prime}$	'W Comp.	45.01
R140	336000 hm	\cdots	1 W Comp.	4612
R141, R142, RII:3. R147, RIR4, RI!G	1 Mig	- 20 '	1.2 W Comp.	4513
kis:3	20 Mry	-10'	${ }^{1} 2 \mathbf{W}$ Comp.	4626
K156\%	27000 hm	$\cdot 10^{\prime}$;	WW Comp.	4579
R15:9	1 Mrk	* 10';	$1: W$ Comp.	4614
12160	1 Mrk P'ot. (Vertical Hold) (Chassis 140) ('hassis 140)			4817
	I Mrik l'ot. (Vertical Hold)			4823
1:161	(ix(0) Ohmi	+10';	1.2W Comp.	4604
R16:3	:3300 0 hm	+10\%	'ıW Comp.	4607
12164	1.5 Mrg	\cdots	${ }_{1}{ }_{1} \mathbf{W}$ W Comp.	4605
1 1165	2.2 Mek	+10\%	$I_{2} \mathbf{W}$ Comp.	4606
R166	2.5) Mek Pot. (Vertical Size)			4821
R167 1200	47.0060 Ohm	$+10^{\prime \prime}$	1/2 Comp.	4559
R168	$5^{5} 606$ Ohm	: 20\%	${ }_{2} \mathbf{W}$ Comp.	4599
R16:9	Sots) Ohm Pot. (Vertical Linearity)			4820
18170	6800) 0 hm	$+10^{\prime}$;	1W Comp.	4608
18171	25.000 Omm (W.W.)	-10\%i	$3 W$	4714
18172	150 KI Ohm Pot. (Focus)			4818
12173	1060 (hmm	+ 10\%	1W Comp.	4627
18174	:3000 (\%hm (.T. (W.W.) C'andohm			4720
16175, R185	1010 hm	+10\%	2W Comp.	4615
R176	150000 hm	$\pm 5 \%$	$1 / 2 \mathrm{~W}$ Comp.	4610
12177	25.0000 Ohm (W.W.)		10W	4712
[177R	16.50 (hm (W.W.) Candohm			4717
16179	56800 Ohm	+ $5 \cdot$	1/2W Comp.	4629
K 180 H 181	150,0060 Ohm	$\pm 10 \%$	$1 / 2 \mathrm{~W}$ Comp.	4589
K181	50,000 (Ohm Pot. (Horizontal Hold)			4819
18182	220,000 Ohm	+10\%	1/2W Comp.	4618
16183	fix Ohm	$+20 \%$	$1 / 2 \mathrm{~W}$ Comp.	4524
R186	10,006 Ohm	$\pm 20 \%$	1 W Comp.	4609
K1K7	3.3 Ohm	$\pm 10 \%$	y, W Comp.	4709
RIKR	1 Meg	$\pm 20 \%$	1 W Comp.	4613
R189	58(k)-560-500 Ohm (W.W.)		2W Comp.	4713
R202. 12203	5600 hm	$\pm 10 \%$	1/2W . Comp.	4507
R205	10,640 9 hm	$\pm 10 \%$	2W Comp.	4611
R206*	1500 Ohm (W.W.)		3W	4715
$\begin{aligned} & 1,101,1,102,1,103, \\ & 1,104 \end{aligned}$	Picture IF Coil			5298
1.105. 1.106	Praking Coil, 140 mh			5302
1.107, R138	Praking Coil, 200 mh on $22,1000 \mathrm{Ohm}$		1/2W Comp.	5303
1.108	Peaking Coil, 280 mh			5301
1,10!	Filter Choke			5125
1.110	Focus Coil			55209
1.111	Horizontal Oscillator Coil			5300
1.112 1.113	Width Control Horizontal Linearity Control			5295
1.114, 1115	Weflection Yoke Assembly			5293
T100	Int Sound IF Transformer			5304
T101	Rutio Detector Transformer			5305
T102	Audio Output Transformer (Chassis 140, 142)			5124
	(Chassix 146)			5131
T103	Cuthode Trap Transformer			5299
T104	Vertical Oscillator Transformer			5127
T105,	Virical Output Transformer			5129
T106	Power Transformer			$\begin{aligned} & 5015 \text { or } \\ & 5016 \end{aligned}$
T107	Ilorizontal Output Tarnsformer			5123
F100	Fuse $1 / 4 \mathrm{amp} 250$, V			9515
S101	On-Off Switch (Part of R108) A(' (ord with Interlock Juck			3176

-Chassis 142 and 146 only.

Symbol	
C101, C103	(Part of T100)
C102, C104, C115.	$2 \times .004 \mathrm{Mmf}$
C116, C118, C119,	
C121, C126, C130,	
C105, C106	(Part of T101)
C107, C166, C167	1000 Mmf
C108	5 Mf
$\begin{gathered} \text { C109, C111, C113, } \\ \text { C131, C148, C159, } \end{gathered}$. 01 Mf
C161	
C110	. 02 M f
C112, C142, C143,	.005 M
C114,	56 Mmf
C117, C120, C123,	220 Mmf
C127	
C122, C124	5000 Mmf
C125	(Part of T103)
C128	100 Mmf
C129, C175	. 2 Mf
C132	5 Mmf
C133, C139, C154,	. 05 Mf
C160, C163, C171	
C134	200 Mf
C135, C164	.25 Mf
C136, C149, C150	. 01 Mf
C137, C145, C162	. 1 M f
C138, C170	. 05 Mf
C141	. 002 Mf
C144	. 0047 Mf
C146, C169	. 25 Mf
C147	10-10-10 Mf
C. 151	40 Mf
$\mathrm{C152}$	80 Mf
	80 Mf
	50 Mf
C153	40 Mf
	20 Mf
	10 Mf
C155	. 0039 Mr
C156, C157	270 Mf
C158*	30 Mmf
C172, C173, C174	500 Mmt
C176	(Part of L112
R100, R102	100 Ohm
R101. R103, R117.	1000 Ohm
R124, R127, R:29	
R104	270 Ohm
R105, R106	10,000 Ohm
R107	15,000 Ohm
R108, R109	. 1 Meg' 1 Meg
	(Tone-Vol.-Sw.)
R110, R194	10 Meg
R111	270,000 Ohm
R112, R135, R191	470,000 Ohm
R113	560 Ohm
R114, R119, R145.	10,000 Ohm
R149, R150, R157, R158	
R115, R120	39 Ohm
R116, R121	120 Ohm
R118, R122	3.30 Ohm
R123, R128, R195, R197	6800 Ohm
R125, R204	$8: 30 \mathrm{hm}$
R126, R133, R171	3900 Ohm
R130, R154, R173, R190	470.000 Ohm
R131	680,000 Ohm

CHASSIS 143, 147 PARTS LIST

Symbol	Description			Hoffiman Part No.
C101, C103	(Part of T100)			
C102, C104, C115.	$2 \times .004 \mathrm{Mmf}$		Ceramic Hi-K	40.36
C116, C118, C119,				
C121, C126, C130,				
C105, C106				
C107, C166, C167	1000 Mmf	$\pm 20 \%$	Ceramic Hi-K	4025
C108	5 Mf	50 V	Electrolytic	4209
C109, C111, C113,	. 01 Mf	400 V	Paper	4112
C131, C148, C159, C161				
C110	. 02 Mf	400 V	Paper	4106
C112, C142, C143,	. 005 Mf	400 V	Paper	4114
C165, C168				
C114	56 Mmf	$\pm 10^{\prime \prime}$	Mica	40.34
C117, C120, C123,	220 Mmf	$\pm 20^{\prime}$;	Ceramic	4026
$\begin{aligned} & \text { C127, C124 } \\ & \text { C122, C124 } \end{aligned}$				4029
C125	(Part of T10		Ceramic Hi-K	4025
C128	100 Mmf	$\pm 10^{\prime}$;	Ceramic N750	4012
C129, C175	. 2 Mf	200 V	Paper	4108
C132	5 Mmf	$\pm 5 \cdot \%$	Ceramic N750	4028
C133, C139, C154,	. 05 Mf	400 V	Paper	4101
C160, C163, C17i				
C134	200 Mf	6V'	Piectrolytic	4216
C135, C164	. 25 Mf	600V	Paper	4116
C136, C149, C150	. 01 Mf	600 V	Paper	4103
C137, C145, C162	. 1 Mf	400 V	Paper	4121
C138, C170	.05 Mf	600 V	Paper	4109
C141	. 002 Mf	400 V	Paper	4115
C144	. 0047 Mf	$\pm 5 \cdot \%$	Mica	4035
C146, C169	. 25 Mf	400 V	Paper	4117
C147	10-10-10 Mf	450 V	Flectrolytic	4215
C.151	40 Mf	425 V .	Electrualytic	4212
C1.)2	80 Mf 80 Mf	150 V	$\left.\begin{array}{l}\text { Flectrolytic } \\ \text { Electrol }\end{array}\right\}$	421:3
	50 Mf	50 V	Electrolytic	
C153	40 Mf	45019	Flectrolytic	
	20 Mf	250	Electrolytic	4219
	10 Mf	450\%	Electrolytic \|	
${ }_{C 155}^{\text {C15 }}$ C157	. 0039 M C	+10 $+10^{\prime}$ +1	Mica	4037
C156, C 158.5 C15	270 Mf 30 Mmf	$\pm 10^{\prime} ;$	$\xrightarrow[\text { Mica }]{\text { Ceramic }}$	4022
$\mathrm{Cl58}^{\text {C172, }} \mathrm{C} 173, \mathrm{C} 174$	30 Mmf 500 Mmt	$\pm 10^{\prime}$ 10,000	Ceramic NPO	4043 4218
$\begin{aligned} & \mathrm{C} 172, \\ & \mathrm{C} 176 \end{aligned}$	(Part of (1112)	10,000 V	Mica	4218
R100, R102	100 Ohm	$+10^{\circ}$	'.W Comp.	4566
$\begin{aligned} & \text { R101, R10n, R117. } \\ & \text { R124, R127, R129 } \end{aligned}$	1000 Ohm	$\pm 20 \%$	'.W Comp.	4542
R104	270 Ohm	+20';	1. W Comp.	4601
R105, R106	10,000 Ohm	$\pm i{ }^{\prime}$	W W Comp.	4624
R107	15,000 Ohm	$\pm 10^{\prime}$,	'.W Comp.	4619
R108, R109	. 1 Meg/ 1 Meg Pot.w/Switch (Tone-Vol.-Sw.)			4815
R110, R194	10 Meg (${ }^{\text {1 }}$	$\pm 20^{\prime} ;$	IW Comp.	450 5
R111	270,000 Ohm	$\pm 10^{\prime \prime}$:	IW Comp.	4602
R112, R135, R191	470,000 Ohm	$\pm 20^{\prime}$	WW Comp.	4 SO 6
R113, $\mathrm{R} 114, \mathrm{R} 119, \mathrm{R} 145$	560 Ohm	$\pm 10^{\circ}$	1 W Comp.	4621
$\begin{aligned} & \text { R114, R119, R145, } \\ & \text { R149, R150, R157, } \\ & \text { R158 } \end{aligned}$	10.000 Ohm	$\pm 10^{\prime}$	':W Comp.	4597
R115, R120	39 Ohm	$\pm 10^{\circ}$;	1. W Comp.	46.20
R116, R121 R118, R122	120 Ohm 330 Ohm	$\pm 10^{\prime}$,	',W Comp.	4.56
R118, R122 R123, R128, R195,	330 Ohm 6800 Ohm	$\pm 20^{\prime}$ $\pm 10^{\circ}$:W Comp.	$450!$ 4557
R197				
R125, R204	82 Ohm	$+10 \%$	'W Comp.	4598
R126, R133, R171	3900 Ohm	$+10^{\prime}$, W Comp.	45.7
R130, R154, R173, R190	470,000 Ohm	+ 10 ,	' $\because W$ Comp.	4632
R131	680,000 Ohm	$\pm 20^{\prime}$,	${ }^{1} \because \mathrm{~W}$ Comp.	45.\%.)

KEYED SYNC PULSE MODIFICATION
SYNC CIRCUIT MODIFICATION
ON 16" TV RECEIVERS

MODEL
826, 827, 828
830, 831
917, 918

CHASSIS
143
151
152

REFERENCE: Service Notes "Unstable Vertical Sync" describes the sync circuit modification for all Hoffman chassis except the ló' set. A schematic diagram of the modified circuits is included with these notes. Additional information on AGC improvements which aid in stabilizing the picture synchronization is published in Field Service Notes headed "Signal Keyed AGC - Circuit Modifications". These three bulletins should be used together when any sync or AGC modifications are made.
MODIFICATIONS: Fewer changes are required on the Hoffman 16" receiver than on the $10^{\prime \prime}$ or $12^{\prime \prime}$ models. The required changes are listed below. No other sync circuit changes need be made. Particularly note that the vertical sync integrating network remains connected directly to the plate of Vll3B, sync clipper tube.

Chassis 140 only.

Old Part
R145 (4597)

R147 (4315)

R147 connected
from Vll2 pin
1 to ground

New Part
RIL4. $5 \quad(4629)$

R147 (4626)

R147 connected
from Vll2 pin 1
to parallel Cl38

Difference

Changed from 2.7K to 5.6 K ohms

Changed from 1 meg to 20 meg

Wiring change

Changed from .05 mf to .02 mf 600 V

